An Investigation into Kanji Character Discrimination Process from EEG Signals

نویسندگان

  • Hiroshi Abe
  • Minoru Nakayama
چکیده

The frontal area in the brain is known to be involved in behavioral judgement. Because a Kanji character can be discriminated visually and linguistically from other characters, in Kanji character discrimination, we hypothesized that frontal event-related potential (ERP) waveforms reflect two discrimination processes in separate time periods: one based on visual analysis and the other based on lexcical access. To examine this hypothesis, we recorded ERPs while performing a Kanji lexical decision task. In this task, either a known Kanji character, an unknown Kanji character or a symbol was presented and the subject had to report if the presented character was a known Kanji character for the subject or not. The same response was required for unknown Kanji trials and symbol trials. As a preprocessing of signals, we examined the performance of a method using independent component analysis for artifact rejection and found it was effective. Therefore we used it. In the ERP results, there were two time periods in which the frontal ERP wavefoms were significantly different betweeen the unknown Kanji trials and the symbol trials: around 170ms and around 300ms after stimulus onset. This result supported our hypothesis. In addition, the result suggests that Kanji character lexical access may be fully completed by around 260ms after stimulus onset. Keywords— Character discrimination, Event-related Potential, Independent Component Analysis, Kanji, Lexical access.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of EEG Signals for Discrimination of Two Imagined Words

In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...

متن کامل

پیش‌گویی برخط و تک‌کاناله وقوع حمله‌های صرعی با ارائه الگوی تولید صرع بر روی سیگنال‌های depth-EEG با استفاده از فیلتر کالمن توسعه‌یافته

Many efforts have been done to predict epileptic seizures so far. It seems that some kind of abnormal synchronization among brain areas is responsible for the seizure generation. This is because the synchronization-based algorithms have been the most important methods so far. However, the huge number of EEG channels, which is the main requirement of these methods, make them very difficult to us...

متن کامل

Single-trial Classification of Viewed Characters using Single-channel EEG Waveforms

Electroencephalograms (EEGs) and Eventrelated potentials (ERP) have long been used to observe the human visual perception process, such as the human response to letters, Kanji characters and symbols. This paper examines the possibility of classifying characters when viewed by subjects in single trials using single-channel EEG waveforms of the frontal area (Fz) and the occipital area (Oz) of the...

متن کامل

Application of the Sample Entropy for Discrimination between Seizure and Seizure-Free EEG Signals

The electroencephalogram (EEG) is an invaluable measurement for the purpose of assessing brain activities. The detection of epileptic seizures based on EEG signal is very useful in diagnostics. In this paper, we present a new method for discrimination between seizure and seizure-free EEG signals. The proposed method is based on empirical mode decomposition (EMD) process. We investigated that th...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009